Fluoropolymers are polymers with fluorine atoms directly attached to their carbon backbone. Fluoropolymers are materials that possess a unique combination of properties, making them more efficient, versatile and critical to the products that they enable.

These include:
- Fire Resistant
- High Performance Electrical Insulator
- Weather Resistant
- Non-Wetting
- Non-Stick
- Temperature Resistant
- Chemically Resistant

Fluoropolymers are critical to the semiconductor industry because of the unique combination of properties they offer. They are used for piping, vessels, valves and pumps that need to withstand aggressive etching chemicals, and maintain the high purity needed to make semiconductors function. The Semiconductor Industry:

**Benefits of Fluoropolymers to Electronics:**
- Increase lifespan of the components they are used in by up to three times
- Improve fire safety
- Increase transmission speeds
- Enable smaller components and final products
- Enhance the installation and reliability of wires and optical and data cables

**Critical Uses in Electronics**
- Printed circuit boards in many electronics including cell phones
- Display and touch screen panels and coatings
- LED packaging/encapsulants
- Copier rolls and paper feeders
- Wire and cable insulation in many kinds of electronic equipment
- Pipings, vessels, valves and pumps used in semiconductor manufacturing

**Fluoropolymers By the Numbers**
- **1,500** Direct Jobs
- **13,500** Indirect Jobs

**Downstream Jobs**
Hundreds of thousands of additional jobs are supported by industries that rely on fluoropolymers.

**Direct Jobs**
- **$520M** Trade Surplus

**Indirect Jobs**
- **$150M** Research & Development
  (6.4% of revenue of interviewed companies)

**ELECTRONICS: A CLOSER LOOK**

**$210B**
Sector

**250,000**
Employed Americans

2018 Socio-economic assessment of the U.S. Fluoropolymer Industry, prepared by the Fluoropolymer Industry with support from AGC, Chemours, Daikin and 3M, and developed by Wood Environment & Infrastructure Solutions UK